WebJan 22, 2024 · Convolutional Neural Networks (CNNs) have been successful in many domains, and can be generalized to Graph Convolutional Networks (GCNs). … WebApr 14, 2024 · In this paper, we propose a novel approach by using Graph convolutional networks for Drifts Detection in the event log, we name it GDD. Specifically, 1) we transform event sequences into two directed graphs by using two consecutive time windows, and construct the line graphs for the directed graphs to capture the orders between different ...
Process Drift Detection in Event Logs with Graph Convolutional Networks
WebApr 13, 2024 · A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. ... Nonetheless, with non-grid data structures, such as graphs, the graph convolutional network (GCN) has an advantage over CNN by … WebApr 14, 2024 · In this paper, we propose a novel approach by using Graph convolutional networks for Drifts Detection in the event log, we name it GDD. Specifically, 1) we … daily report google sheet
The Graph Neural Network Model IEEE Journals & Magazine
WebNov 17, 2024 · A GCN-based graph revision module is introduced for predicting missing edges and revising edge weights w.r.t. downstream tasks via joint optimization, which shows that GRCN consistently outperforms strong baseline methods by a large margin. Graph Convolutional Networks (GCNs) have received increasing attention in the machine … WebSep 26, 2024 · Graph Convolutional Networks. This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of nodes in a graph, as described in our … WebApr 14, 2024 · In this paper, a Region-aware Graph Convolutional Network for traffic flow forecasting is proposed to predict future traffic conditions based on historical traffic flow … daily reporting center asheboro nc